论文标题
InterInsicnerf:学习可编辑的新颖视图综合的内在神经辐射场
IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable Novel View Synthesis
论文作者
论文摘要
现有的逆渲染与神经渲染方法相结合,只能在对象特定场景上执行可编辑的新型视图综合,而我们呈现固有的神经辐射场(被称为interinsicnerf),将内在分解引入基于NERF的神经渲染方法中,并可以将其应用于房间刻度场景。由于固有分解是一种根本上约束的逆问题,因此我们提出了一种新颖的距离引人注目的点采样和自适应反射率迭代聚类优化方法,该方法可以通过传统的固有分解约束来培训以不受欢迎的方式培训,从而导致多次观察一致的内在固有解次分解结果。为了解决一个问题,即场景中不同相似反射率的相似实例被错误地聚集在一起,我们进一步提出了一种具有粗到1的优化的分层聚类方法,以获得快速的层次索引表示。它支持引人注目的实时增强应用,例如重新上色和照明变化。广泛的实验和编辑样品在对象特异性/室内场景和合成/现实字的数据上都表明,即使对于具有挑战性的序列,我们也可以获得一致的内在分解结果和高保真的新型视图综合。
Existing inverse rendering combined with neural rendering methods can only perform editable novel view synthesis on object-specific scenes, while we present intrinsic neural radiance fields, dubbed IntrinsicNeRF, which introduce intrinsic decomposition into the NeRF-based neural rendering method and can extend its application to room-scale scenes. Since intrinsic decomposition is a fundamentally under-constrained inverse problem, we propose a novel distance-aware point sampling and adaptive reflectance iterative clustering optimization method, which enables IntrinsicNeRF with traditional intrinsic decomposition constraints to be trained in an unsupervised manner, resulting in multi-view consistent intrinsic decomposition results. To cope with the problem that different adjacent instances of similar reflectance in a scene are incorrectly clustered together, we further propose a hierarchical clustering method with coarse-to-fine optimization to obtain a fast hierarchical indexing representation. It supports compelling real-time augmented applications such as recoloring and illumination variation. Extensive experiments and editing samples on both object-specific/room-scale scenes and synthetic/real-word data demonstrate that we can obtain consistent intrinsic decomposition results and high-fidelity novel view synthesis even for challenging sequences.