论文标题
使用机器学习的基于空间模式的公共汽车到达时间估算的动态模型
A Dynamic Model for Bus Arrival Time Estimation based on Spatial Patterns using Machine Learning
论文作者
论文摘要
智能城市的概念在全球范围内进行了调整,以提供更好的生活质量。智能城市的智能移动性组件致力于为其居民提供平稳,安全的通勤,并促进环保且可持续的替代方案,例如公共交通(BUS)。在几种智能应用程序中,该系统提供了最新信息,例如巴士到达,旅行持续时间,时间表等,可提高公共交通服务的可靠性。尽管如此,该应用程序仍需要有关交通流量,事故,事件和公共汽车位置的实时信息。大多数城市都缺乏提供这些数据的基础架构。在这种情况下,提出了一个总线到达预测模型,以预测使用有限的数据集的到达时间。该研究使用了公共交通巴士和空间特征的位置数据。印度Tumakuru的Tumakuru City Service的一条路线之一被选中并分为两种空间模式:相交和切片没有相交的部分。机器学习模型XGBoost均针对两个空间模式进行建模。使用前面的旅行信息和机器学习模型开发了动态预测总线到达时间的模型,以估算下游总线站的到达时间。根据所做的预测的R平方值进行比较模型的性能,并提出的模型确立了卓越的结果。建议预测巴士到达研究区域。所提出的模型也可以扩展到其他类似的城市,该城市与交通相关的基础架构有限。
The notion of smart cities is being adapted globally to provide a better quality of living. A smart city's smart mobility component focuses on providing smooth and safe commuting for its residents and promotes eco-friendly and sustainable alternatives such as public transit (bus). Among several smart applications, a system that provides up-to-the-minute information like bus arrival, travel duration, schedule, etc., improves the reliability of public transit services. Still, this application needs live information on traffic flow, accidents, events, and the location of the buses. Most cities lack the infrastructure to provide these data. In this context, a bus arrival prediction model is proposed for forecasting the arrival time using limited data sets. The location data of public transit buses and spatial characteristics are used for the study. One of the routes of Tumakuru city service, Tumakuru, India, is selected and divided into two spatial patterns: sections with intersections and sections without intersections. The machine learning model XGBoost is modeled for both spatial patterns individually. A model to dynamically predict bus arrival time is developed using the preceding trip information and the machine learning model to estimate the arrival time at a downstream bus stop. The performance of models is compared based on the R-squared values of the predictions made, and the proposed model established superior results. It is suggested to predict bus arrival in the study area. The proposed model can also be extended to other similar cities with limited traffic-related infrastructure.