论文标题

用于车辆动态频谱访问的基于联合学习的干扰建模

Federated Learning-Based Interference Modeling for Vehicular Dynamic Spectrum Access

论文作者

Hoffmann, Marcin, Kryszkiewicz, Pawel, Kliks, Adrian

论文摘要

基于排的驾驶是一种技术,允许车辆在近距离近距离互相跟随,例如节省燃料。但是,它需要可靠的无线通信来调整其速度。最近的研究表明,专门用于车辆到车辆通信的频带对于平台内通信可能太忙了。因此,使用其他占用率低的频谱资源,即二级频谱通道是合理的。挑战是对这些渠道的干扰建模,以实现适当的通道选择。在本文中,我们提出了一个两层无线电环境图(REM),该图旨在通过使用联合学习方法为排行管提供准确的位置依赖性干扰模型。每个排配备了一个本地REM,该REM根据原始干扰样本和存储在全局REM中的先前干扰模型进行更新。全局REM中的模型是通过合并白冈报告的模型获得的。节点仅交换干扰模型的参数,从而降低了所需的控制通道容量。此外,即使与全局REM的连接暂时不可用,也可以利用本地REM来预测频道占用。考虑到非平凡干扰模式的计算机模拟,该系统将通过计算机模拟进行验证。

A platoon-based driving is a technology allowing vehicles to follow each other at close distances to, e.g., save fuel. However, it requires reliable wireless communications to adjust their speeds. Recent studies have shown that the frequency band dedicated for vehicle-to-vehicle communications can be too busy for intra-platoon communications. Thus it is reasonable to use additional spectrum resources, of low occupancy, i.e., secondary spectrum channels. The challenge is to model the interference in those channels to enable proper channel selection. In this paper, we propose a two-layered Radio Environment Map (REM) that aims at providing platoons with accurate location-dependent interference models by using the Federated Learning approach. Each platoon is equipped with a Local REM that is updated on the basis of raw interference samples and previous interference model stored in the Global REM. The model in global REM is obtained by merging models reported by platoons. The nodes exchange only parameters of interference models, reducing the required control channel capacity. Moreover, in the proposed architecture platoon can utilize Local REM to predict channel occupancy, even when the connection to the Global REM is temporarily unavailable. The proposed system is validated via computer simulations considering non-trivial interference patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源