论文标题

分析(子)Riemannian PDE-G-CNNS

Analysis of (sub-)Riemannian PDE-G-CNNs

论文作者

Bellaard, Gijs, Bon, Daan L. J., Pai, Gautam, Smets, Bart M. N., Duits, Remco

论文摘要

群体模棱两可的卷积神经网络(G-CNN)已成功地应用于几何深度学习中。通常,G-CNN比CNN具有优势,即它们不会浪费网络在网络中对对称性的培训对称性。最近引入的基于PDE的G-CNN(PDE-G-CNNS)的框架将G-CNN概括。 PDE-G-CNN具有同时的核心优势1)降低网络复杂性,2)提高分类性能,3)提供几何解释性。它们的实现主要包括与内核的线性和形态卷积。 在本文中,我们表明,先前建议的近似形态核并不总是准确地准确地近似确切的内核。更具体地说,根据Riemannian指标的空间各向异性,我们认为必须诉诸于亚利曼式近似值。我们通过提供新的近似内核来解决此问题,无论各向异性如何。我们提供了对近似内核的更好误差估计的新定理,并证明它们都具有与确切的反射对称性相同的反射对称性。 我们测试了两个数据集的PDE-G-CNN框架中多个近似核的有效性,并观察到新的近似核的改进。我们报告说,PDE-G-CNN再次允许与两个数据集上的G-CNN和CNN相比具有可比较或更好的性能,从而大大降低了网络复杂性。此外,PDE-G-CNN具有比G-CNN更好的几何解释性的优点,因为形态核与神经地质学的关联领域有关。

Group equivariant convolutional neural networks (G-CNNs) have been successfully applied in geometric deep learning. Typically, G-CNNs have the advantage over CNNs that they do not waste network capacity on training symmetries that should have been hard-coded in the network. The recently introduced framework of PDE-based G-CNNs (PDE-G-CNNs) generalises G-CNNs. PDE-G-CNNs have the core advantages that they simultaneously 1) reduce network complexity, 2) increase classification performance, and 3) provide geometric interpretability. Their implementations primarily consist of linear and morphological convolutions with kernels. In this paper we show that the previously suggested approximative morphological kernels do not always accurately approximate the exact kernels accurately. More specifically, depending on the spatial anisotropy of the Riemannian metric, we argue that one must resort to sub-Riemannian approximations. We solve this problem by providing a new approximative kernel that works regardless of the anisotropy. We provide new theorems with better error estimates of the approximative kernels, and prove that they all carry the same reflectional symmetries as the exact ones. We test the effectiveness of multiple approximative kernels within the PDE-G-CNN framework on two datasets, and observe an improvement with the new approximative kernels. We report that the PDE-G-CNNs again allow for a considerable reduction of network complexity while having comparable or better performance than G-CNNs and CNNs on the two datasets. Moreover, PDE-G-CNNs have the advantage of better geometric interpretability over G-CNNs, as the morphological kernels are related to association fields from neurogeometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源