论文标题

具有集成$ L_1 $损失的预测密度估计器

Predictive density estimators with integrated $L_1$ loss

论文作者

Bhagwat, Pankaj, Marchand, Eric

论文摘要

本文解决了$ y $的密度$ q(\ | y-θ\ |^2)$ y $的有效预测密度估计的问题,该$基于$ x \ sim p(\ | | x-thime | |^2)$ for $ y,y,x,x,x,x,x,x,x,x,mathbb in \ mathbb {r}^d $。所选标准是集成的$ l_1 $损失,由$ l(θ,\ hat {q})\,= \,\ int _ {\ mathbb {r}^d} \ big | big | hat {q}(q} {q}(y)) \,dy $和相关的常见风险,以$θ$为$θ\。对于绝对连续且严格减少$ Q $,我们确定了规模扩展改进的不可避免性$ \ hat {q} _c(y; x)\,= \,= \,\ frac {1} {c^d} q \ big(\ | y-x \ | y-x \ |^2/c^2/c^2/c^2/c^2/c^2/c^2/c^big, $ c \ in(1,c_0)$。对于$ p,q $和$ d \ geq 2 $,这一发现是普遍的,并且扩展到损失功能$γ\ big(l(θ,\ hat {q})\ big)$,严格增加$γ$。该发现还扩展到包括更通用插件密度的比例扩展改进$ q(\ | y- \hatθ(x)\ |^2 \ big)$,当参数space $θ$是$ \ mathbb {r}^d $的紧凑子集时。介绍并评论了支配性发现的数值分析。作为补充,我们证明了$ Q $的单峰假设是对$ y |θ$的分布均匀分布在以约$θ$为中心的球上分布的案例的详细分析。在这种情况下,我们提供了一个单变量($ d = 1 $)示例,其中最佳的equivariant估计器是插件估算器,并且在所有$ \ hat {q} _c $中,插件密度$ \ hat {q} _1 $在插件密度$ \ hat {q} _1 $中都是最佳的情况(对于$ d = 1,3 $)。

This paper addresses the problem of an efficient predictive density estimation for the density $q(\|y-θ\|^2)$ of $Y$ based on $X \sim p(\|x-θ\|^2)$ for $y, x, θ\in \mathbb{R}^d$. The chosen criteria are integrated $L_1$ loss given by $L(θ, \hat{q}) \, =\, \int_{\mathbb{R}^d} \big|\hat{q}(y)- q(\|y-θ\|^2) \big| \, dy$, and the associated frequentist risk, for $θ\in Θ$. For absolutely continuous and strictly decreasing $q$, we establish the inevitability of scale expansion improvements $\hat{q}_c(y;X)\,=\, \frac{1}{c^d} q\big(\|y-X\|^2/c^2 \big) $ over the plug-in density $\hat{q}_1$, for a subset of values $c \in (1,c_0)$. The finding is universal with respect to $p,q$, and $d \geq 2$, and extended to loss functions $γ\big(L(θ, \hat{q} ) \big)$ with strictly increasing $γ$. The finding is also extended to include scale expansion improvements of more general plug-in densities $q(\|y-\hatθ(X)\|^2 \big)$, when the parameter space $Θ$ is a compact subset of $\mathbb{R}^d$. Numerical analyses illustrative of the dominance findings are presented and commented upon. As a complement, we demonstrate that the unimodal assumption on $q$ is necessary with a detailed analysis of cases where the distribution of $Y|θ$ is uniformly distributed on a ball centered about $θ$. In such cases, we provide a univariate ($d=1$) example where the best equivariant estimator is a plug-in estimator, and we obtain cases (for $d=1,3$) where the plug-in density $\hat{q}_1$ is optimal among all $\hat{q}_c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源