论文标题

混合量子古典自旋系统的动力学

Dynamics of mixed quantum-classical spin systems

论文作者

Gay-Balmaz, François, Tronci, Cesare

论文摘要

在自旋链理论中,已经提出了混合量子古典自旋系统,最近在镁旋转中提出了混合量子系统。然而,当前的量子古典动力学模型以外的均值近似值通常会遇到长期的一致性问题,在某些情况下,海森堡的不确定性原理无效。在这里,我们提出了量子古典旋转动力学的完全汉密尔顿理论,该理论似乎是第一个确保整个一致性属性,包括经典和量子密度的阳性,因此Heisenberg的原理始终得到满足。我们展示了该理论如何与测量理论中最近的能量平衡考虑有关,并明确介绍其泊松支架结构。在重点介绍了经典的Bloch矢量与可观察的量子自旋相互作用的更简单情况之后,我们说明了该模型的扩展到具有多个自旋的系统,并恢复了轨道自由度的存在。

Mixed quantum-classical spin systems have been proposed in spin chain theory and, more recently, in magnon spintronics. However, current models of quantum-classical dynamics beyond mean-field approximations typically suffer from long-standing consistency issues, and, in some cases, invalidate Heisenberg's uncertainty principle. Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties, including positivity of both the classical and the quantum density, so that Heisenberg's principle is satisfied at all times. We show how this theory may connect to recent energy-balance considerations in measurement theory and we present its Poisson bracket structure explicitly. After focusing on the simpler case of a classical Bloch vector interacting with a quantum spin observable, we illustrate the extension of the model to systems with several spins, and restore the presence of orbital degrees of freedom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源