论文标题

通过模板匹配的功能嵌入作为重新系统块

Feature Embedding by Template Matching as a ResNet Block

论文作者

Gorgun, Ada, Gurbuz, Yeti Z., Alatan, A. Aydin

论文摘要

卷积块是本地特征提取器,是神经网络成功的关键。为了使局部语义功能相当明确,我们根据最佳匹配内核将卷积块作为特征选择重新制定。通过这种方式,我们表明,一旦批处理归一化(BN),典型的重新系统块确实通过模板匹配执行局部特征嵌入,然后将整流的线性单元(RERU)解释为ARG-MAX优化器。从这个角度来看,我们根据使用标签信息来定制一个残差块,该块明确迫使语义上有意义的本地功能嵌入。具体而言,我们根据相应区域匹配的类为每个局部区域分配一个特征向量。我们在三个流行的基准数据集上评估了我们的方法,该数据集使用几个用于图像分类的架构进行了体系结构,并始终表明我们的方法可以大大提高基线体系结构的性能。

Convolution blocks serve as local feature extractors and are the key to success of the neural networks. To make local semantic feature embedding rather explicit, we reformulate convolution blocks as feature selection according to the best matching kernel. In this manner, we show that typical ResNet blocks indeed perform local feature embedding via template matching once batch normalization (BN) followed by a rectified linear unit (ReLU) is interpreted as arg-max optimizer. Following this perspective, we tailor a residual block that explicitly forces semantically meaningful local feature embedding through using label information. Specifically, we assign a feature vector to each local region according to the classes that the corresponding region matches. We evaluate our method on three popular benchmark datasets with several architectures for image classification and consistently show that our approach substantially improves the performance of the baseline architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源