论文标题

通过自适应重要性采样,有效的神经网络推断

Efficient Bayes Inference in Neural Networks through Adaptive Importance Sampling

论文作者

Huang, Yunshi, Chouzenoux, Emilie, Elvira, Victor, Pesquet, Jean-Christophe

论文摘要

贝叶斯神经网络(BNN)在过去几年中获得了增加的兴趣。在BNN中,在训练阶段产生了网络的未知重量和偏置参数的完整后验分布。这一概率估计在预测新数据时提供了不确定性量化的能力,提供了几个优势。贝叶斯范式固有的此功能在无数的机器学习应用程序中很有用。在决策产生关键影响的领域,例如医疗保健或自动驾驶,这一点尤其有吸引力。 BNN的主要挑战是训练程序的计算成本,因为贝叶斯技术通常面临严重的维度诅咒。自适应重要性采样(AIS)是最突出的蒙特卡洛方法之一,其声音融合保证和轻松适应性受益。这项工作旨在表明AIS构成了设计BNN的成功方法。更确切地说,我们提出了一种新型算法PMCNET,其中包括有效的适应机制,利用了有关复合物(通常是多模式)后分布的几何信息。数值结果说明了浅层和深神经网络所提出的方法的出色性能和提高的勘探能力。

Bayesian neural networks (BNNs) have received an increased interest in the last years. In BNNs, a complete posterior distribution of the unknown weight and bias parameters of the network is produced during the training stage. This probabilistic estimation offers several advantages with respect to point-wise estimates, in particular, the ability to provide uncertainty quantification when predicting new data. This feature inherent to the Bayesian paradigm, is useful in countless machine learning applications. It is particularly appealing in areas where decision-making has a crucial impact, such as medical healthcare or autonomous driving. The main challenge of BNNs is the computational cost of the training procedure since Bayesian techniques often face a severe curse of dimensionality. Adaptive importance sampling (AIS) is one of the most prominent Monte Carlo methodologies benefiting from sounded convergence guarantees and ease for adaptation. This work aims to show that AIS constitutes a successful approach for designing BNNs. More precisely, we propose a novel algorithm PMCnet that includes an efficient adaptation mechanism, exploiting geometric information on the complex (often multimodal) posterior distribution. Numerical results illustrate the excellent performance and the improved exploration capabilities of the proposed method for both shallow and deep neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源