论文标题

逻辑动力学系统的稳健设置稳定性相对于不确定的切换

Robust Set Stability of Logic Dynamical Systems with respect to Uncertain Switching

论文作者

Guo, Yuqian, Li, Zhitao

论文摘要

本文提出了具有不确定开关的逻辑动力系统(LDS)的鲁棒稳定性的几个定义,包括稳健/统一的稳健设置稳定性和渐近(或无限收敛)/有限时间集稳定性均具有比率。本文证明,当目标集包含所有循环时(即,从每个状态到自身的路径)时,LDS的设置稳定稳定;当且仅当目标集外的所有状态都无法从任何可自动到的状态中无法达到时,LDS均匀地设置了稳定的稳定性或以比率为单位稳定的有限时间集稳定;当且仅当目标集中最大的鲁棒不变子集(LRIS)时,LDS渐近设置为稳定,而不是任何状态。此外,事实证明,均匀的鲁棒设置稳定性意味着稳健的集合稳定性,稳健的集合稳定性意味着渐近设定的稳定性稳定性稳定性。但是,逆索赔通常不是正确的。揭示了在随机切换下稳健稳定性与稳定性之间的关系,即,在不确定的切换中,渐近/有限的时间集稳定性与一个不确定的切换等效等于LDS在随机切换下LDS的渐近/有限时间集稳定性。此外,事实证明,对于统一设置的稳定性和渐近/有限的时间集稳定性,比率为1,集合稳定性等于目的地集中的LRI相当于稳定性。但是,鲁棒的设置稳定性并不意味着相对于目标集中的LRI的稳定性稳定性。这一发现纠正了先前研究的结果。

This paper proposes several definitions of robust stability for logic dynamical systems (LDSs) with uncertain switching, including robust/uniform robust set stability and asymptotical (or infinitely convergent)/finite-time set stability with ratio one. It is proved herein that an LDS is robustly set stable if and only if the destination set contains all loops (i.e., the paths from each state to itself); an LDS is uniformly robustly set stable, or finite-time set stable with ratio one, if and only if all states outside the destination set are unreachable from any self-reachable state; and an LDS is asymptotically set stable with ratio one if and only if the largest robustly invariant subset (LRIS) in the destination set is reachable from any state. In addition, it is proved that uniform robust set stability implies robust set stability, and robust set stability implies asymptotical set stability with ratio one. However, the inverse claims are not generally true. The relations between robust stability and stability under random switching are revealed, that is, the asymptotical/finite-time set stability with ratio one under uncertain switching is equivalent to asymptotical/finite-time set stability of the LDS under random switching. Furthermore, it is proved that, for uniform set stability and asymptotical/finite-time set stability with ratio one, the set stability is equivalent to the stability with respect to the LRIS in the destination set. However, robust set stability does not imply robust stability with respect to the LRIS in the destination set. This finding corrects a result in a previous study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源