论文标题
高度连贯的量子子系统的出现,嘈杂且致密的自旋系统的出现
Emergence of highly coherent quantum subsystems of a noisy and dense spin system
论文作者
论文摘要
量子传感器和Qubits通常是两级系统(TLS),即假设二进制值“ 0”或“ 1”的经典位的量子类似物。它们在实际环境中可以持续使用“ 0”和“ 1”的量子叠加的程度。但是,这种TL永远不会在真实的材料和设备中孤单,并且耦合到其他自由度的耦合限制了叠加状态的生命(称为逆流时间)。破坏性通过两种主要途径发生 - 激发和波动的电磁场。常见的缓解策略是基于材料改进,对时钟状态的开发,这些时钟状态仅二,而不是第二阶,而不是第一顺序,而不是通过对纯种材料的极端稀释来减少相互作用,从而选择了从核旋转中降低噪声的同位素。我们证明,对于嘈杂的核自旋浴中的密集的TLS网络,我们可以利用相互作用从跳跃到波动的优势,将9个变化时间增加了几乎三个数量级。在稀释的稀土绝缘子Liy1-xtbxf4中,TB离子意识到以30GHz分裂和易于实现的时钟状态为特征的TLS。偶极相互作用导致连贯的,局部的结核离子对,由于波动的量子机械环交换相互作用而导致破裂,从而感知周围周围的慢速动力学,几乎局部的TB旋转。跳跃和波动方案通过其Rabi振荡以及经典“误差纠正”微波脉冲序列的强烈影响与不可见的效果极为区分。我们的工作以致密,无序和嘈杂的TLS网络打开发挥作用的破坏性机制,我们的工作扩大了量子传感器和量子的搜索空间,以包括具有密集的,无序的材料的簇,可以探索以探索其本地化效果。
Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogs of classical bits which assume binary values '0' or '1'. They are useful to the extent to which they can persist in quantum superpositions of '0' and '1' in real environments. However, such TLS are never alone in real materials and devices, and couplings to other degrees of freedom limit the lifetimes - called decoherence times - of the superposition states. Decoherence occurs via two major routes - excitation hopping and fluctuating electromagnetic fields. Common mitigation strategies are based on material improvements, exploitation of clock states which couple only to second rather than first order to external perturbations, and reduction of interactions via extreme dilution of pure materials made from isotopes selected to minimize noise from nuclear spins. We demonstrate that for a dense TLS network in a noisy nuclear spin bath, we can take advantage of interactions to pass from hopping to fluctuation dominance, increasing decoherence times by almost three orders of magnitude. In the dilute rare-earth insulator LiY1-xTbxF4, Tb ions realize TLS characterized by a 30GHz splitting and readily implemented clock states. Dipolar interactions lead to coherent, localized pairs of Tb ions, that decohere due to fluctuating quantum mechanical ring-exchange interaction, sensing the slow dynamics of the surrounding, nearly localized Tb spins. The hopping and fluctuation regimes are sharply distinguished by their Rabi oscillations and the invisible vs. strong effect of classic 'error correcting' microwave pulse sequences. Laying open the decoherence mechanisms at play in a dense, disordered and noisy network of interacting TLS, our work expands the search space for quantum sensors and qubits to include clusters in dense, disordered materials, that can be explored for localization effects.