论文标题

奇偶校验和旋转CFT具有边界和缺陷

Parity and Spin CFT with boundaries and defects

论文作者

Runkel, Ingo, Szegedy, Lóránt, Watts, Gérard M. T.

论文摘要

本文是[Arxiv:2001.05055]的后续措施,其中研究了在旋转结构存在下进行二维形式的保形场理论。在本文中,我们定义了四种类型的CFT,其区别是它们是否需要旋转结构才能得到明确定义,以及它们的领域是否具有奇迹。据我们所知,尚未详细研究旋转依赖性的情况,而无需旋转结构的奇偶校验的情况并未详细研究。 我们通过在[Arxiv:Hep-Th/0204148]中开发的三维拓扑字段理论扩展CFT相关因子的描述来分析这些理论,以包括奇偶校验和自旋。在这四种情况下的每一个中,定义数据都是合适的色带融合类别中的特殊frobenius代数$ f $,因此,$ f $的中山自动形态是身份(定向案例)或正方形的身份(旋转案例)。我们使用tft来定义$ f $的相关器,我们表明这些满足相关的分解和单值条件。 我们允许具有边界和拓扑线路缺陷的世界表,并为四种类型的每种类型的边界标签的类别和线路缺陷标签的融合类别提供。 可以从拓扑线缺陷来理解该结构,因为它可以测量可能不可固化的对称性。我们对$ \ Mathbb {z} _2 $ - smmemory的情况进行了详细分析,并提供了所有四种CFT的示例,其中包括Bershadsky-Polyakov模型,说明了这两种新类型。

This paper is a follow-up to [arXiv:2001.05055] in which two-dimensional conformal field theories in the presence of spin structures are studied. In the present paper we define four types of CFTs, distinguished by whether they need a spin structure or not in order to be well-defined, and whether their fields have parity or not. The cases of spin dependence without parity, and of parity without the need of a spin structure, have not, to our knowledge, been investigated in detail so far. We analyse these theories by extending the description of CFT correlators via three-dimensional topological field theory developed in [arXiv:hep-th/0204148] to include parity and spin. In each of the four cases, the defining data are a special Frobenius algebra $F$ in a suitable ribbon fusion category, such that the Nakayama automorphism of $F$ is the identity (oriented case) or squares to the identity (spin case). We use the TFT to define correlators in terms of $F$ and we show that these satisfy the relevant factorisation and single-valuedness conditions. We allow for world sheets with boundaries and topological line defects, and we specify the categories of boundary labels and the fusion categories of line defect labels for each of the four types. The construction can be understood in terms of topological line defects as gauging a possibly non-invertible symmetry. We analyse the case of a $\mathbb{Z}_2$-symmetry in some detail and provide examples of all four types of CFT, with Bershadsky-Polyakov models illustrating the two new types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源