论文标题

奇异的赫米尔人指标和加塔尼人,藤田和卡瓦玛塔的分解定理

Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata

论文作者

Lombardi, Luigi, Schnell, Christian

论文摘要

We prove that a torsion-free sheaf $\mathcal F$ endowed with a singular hermitian metric with semi-positive curvature and satisfying the minimal extension property admits a direct-sum decomposition $\mathcal F \simeq \mathcal U \oplus \mathcal A$ where $\mathcal U$ is a hermitian flat bundle and $\mathcal A$ is一般充足的捆。该结果适用于相对多数式捆绑的直接图像$ f_*ω__{x/y}^{\ otimes m} $下的过滤型形态$ f \ colon x \ y $ y $ y $ y $ y $ y $ y $ y $ a $ m \ geq 2 $。这扩展了藤田,卡塔尼 - 卡瓦玛塔和伊瓦的先前结果。

We prove that a torsion-free sheaf $\mathcal F$ endowed with a singular hermitian metric with semi-positive curvature and satisfying the minimal extension property admits a direct-sum decomposition $\mathcal F \simeq \mathcal U \oplus \mathcal A$ where $\mathcal U$ is a hermitian flat bundle and $\mathcal A$ is a generically ample sheaf. The result applies to the case of direct images of relative pluricanonical bundles $f_* ω_{X/Y}^{\otimes m}$ under a surjective morphism $f\colon X \to Y$ of smooth projective varieties with $m\geq 2$. This extends previous results of Fujita, Catanese--Kawamata, and Iwai.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源