论文标题

多重分析和Erdös-rényi法律大量分支随机步行$ \ r^d $

Multifractal analysis and Erdös-Rényi laws of large numbers for branching random walks in $\R^d$

论文作者

Attia, Najmeddine, Barral, Julien

论文摘要

我们通过考虑标准水平集的完整豪斯多夫维度的子集来重新审查$ \ r^d $可价值的分支随机步行的平均值,在每个无限分支中,eRdös-rényi法律的量化版本量化了大量的大量。假设步行的增量的指数瞬间是有限的,那么当级别属于可能级别的紧凑型凸域$ i $的内部时,即当它们与所谓的吉布斯度量相关联时,我们确实可以同时控制这种集合。 $ \ partial i $由与这些吉布斯措施的``关键''版本相关的级别制成。事实证明,鉴于这两种类型之一的水平,相关的Erdös-rényiLLN取决于赋予下面的Galton-Watson树边界的度量。将我们的控制扩展到所有边界点的情况下,在$ \ partial i \ neq(\ partial {i})_ {\ Mathrm {crit}} $的情况下,我们稍微加强了对增量分布的假设,以表现出$ \ partial i \ setminus(criatial i \ setminus(\ partial crit)的自然分解最重要的是,许多凸的载体尺寸的$ j $ $ j $ $ \ le D-1 $本质上可以将研究减少到与某些$ \ r^{\ r^{\ dim j} $相关的内部和关键点的研究。

We revisit the multifractal analysis of $\R^d$-valued branching random walks averages by considering subsets of full Hausdorff dimension of the standard level sets, over each infinite branch of which a quantified version of the Erdös-Rényi law of large numbers holds. Assuming that the exponential moments of the increments of the walks are finite, we can indeed control simultaneously such sets when the levels belong to the interior of the compact convex domain $I$ of possible levels, i.e. when they are associated to so-called Gibbs measures, as well as when they belong to the subset $(\partial{I})_{\mathrm{crit}}$ of $\partial I$ made of levels associated to ``critical'' versions of these Gibbs measures. It turns out that given such a level of one of these two types, the associated Erdös-Rényi LLN depends on the metric with which is endowed the boundary of the underlying Galton-Watson tree. To extend our control to all the boundary points in cases where $\partial I\neq (\partial{I})_{\mathrm{crit}}$, we slightly strengthen our assumption on the distribution of the increments to exhibit a natural decomposition of $\partial I\setminus (\partial{I})_{\mathrm{crit}}$ into at most countably many convex sets $J$ of affine dimension $\le d-1$ over each of which we can essentially reduce the study to that of interior and critical points associated to some $\R^{\dim J}$-valued branching random~walk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源