论文标题

紧凑型AHLFOR之间的潜在理论和准对称图通过BESOV函数:初步

Potential theory and quasisymmetric maps between compact Ahlfors regular metric measure spaces via Besov functions: preliminary

论文作者

Lehrback, Juha, Shanmugalingam, Nageswari

论文摘要

我们通过空间的双曲线填充物在紧凑的AHLFORS定期度量测量空间中学习BESOV能力。即使该空间不支持任何庞加莱的不平等现象,这种方法也适用。作为BESOV容量估计的应用,我们表明,如果两个AHLFOR的常规度量度量空间之间的同态性均具有同态,则在某些其他假设下,某些BESOV类,那么同构态度必定是一张准对象图。

We study Besov capacities in a compact Ahlfors regular metric measure space by means of hyperbolic fillings of the space. This approach is applicable even if the space does not support any Poincaré inequalities. As an application of the Besov capacity estimates we show that if a homeomorphism between two Ahlfors regular metric measure spaces preserves, under some additional assumptions, certain Besov classes, then the homeomorphism is necessarily a quasisymmetric map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源