论文标题

将机器学习技术应用于中级级联衰减

Applying Machine Learning Techniques To Intermediate-Length Cascade Decays

论文作者

Haq, Maaz Ul, Kilic, Can, Lawrence-Sanderson, Benjamin, Sudha, Ram Purandhar Reddy

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the collider phenomenology of extensions of the Standard Model with partner particles, cascade decays occur generically, and they can be challenging to discover when the spectrum of new particles is compressed and the signal cross section is low. Achieving discovery-level significance and measuring the properties of the new particles appearing as intermediate states in the cascade decays is a longstanding problem, with analysis techniques for some decay topologies already optimized. We focus our attention on a benchmark decay topology with four final state particles where there is room for improvement, and where multidimensional analysis techniques have been shown to be effective in the past. Using machine learning techniques, we identify the optimal kinematic observables for discovery, spin determination and mass measurement. In agreement with past work, we confirm that the kinematic observable $Δ_4$ is highly effective. We quantify the achievable accuracy for spin determination and for the precision for mass measurements as a function of the signal size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源