论文标题

使用基于信心的预测在线更新安全保证

Online Update of Safety Assurances Using Confidence-Based Predictions

论文作者

Nakamura, Kensuke, Bansal, Somil

论文摘要

诸如自动驾驶汽车和辅助操纵器之类的机器人越来越多地在动态环境中运行,并紧密地接近人。在这种情况下,机器人可以利用人类运动预测因子来预测其未来状态并计划安全有效的轨迹。但是,没有模型是完美的 - 当观察到的人类行为偏离模型预测时,机器人可能会计划不安全的操作。最近的作品探索了在人类模型中维持置信度参数以克服这一挑战,其中预测的人类行为是根据预测模型中观察到的人类行动的可能性在线纠正的。这就打开了一项新的研究挑战,即\ textit {如何随着置信度参数的变化来计算未来的人类状态吗?}在这项工作中,我们提出了一种基于汉密尔顿 - 雅各布(HJ)的基于可达性的方法来克服这一挑战。将置信参数视为系统中的虚拟状态,我们计算了一个参数条件的正向触及管(FRT),该试管(FRT)提供了未来人类状态作为置信参数的函数。在线,随着置信参数的变化,我们可以简单地查询相应的FRT,并使用它来更新机器人计划。计算参数条件的FRT对应于(离线)高维触及性问题,我们通过利用数据驱动的可及性分析的最新进展来解决。总体而言,即使人类预测模型不正确,我们的框架也可以在线维护和人类机器人互动方案中的安全保证更新。我们在几种安全至关重要的自主驾驶场景中演示了我们的方法,涉及最先进的基于深度学习的预测模型。

Robots such as autonomous vehicles and assistive manipulators are increasingly operating in dynamic environments and close physical proximity to people. In such scenarios, the robot can leverage a human motion predictor to predict their future states and plan safe and efficient trajectories. However, no model is ever perfect -- when the observed human behavior deviates from the model predictions, the robot might plan unsafe maneuvers. Recent works have explored maintaining a confidence parameter in the human model to overcome this challenge, wherein the predicted human actions are tempered online based on the likelihood of the observed human action under the prediction model. This has opened up a new research challenge, i.e., \textit{how to compute the future human states online as the confidence parameter changes?} In this work, we propose a Hamilton-Jacobi (HJ) reachability-based approach to overcome this challenge. Treating the confidence parameter as a virtual state in the system, we compute a parameter-conditioned forward reachable tube (FRT) that provides the future human states as a function of the confidence parameter. Online, as the confidence parameter changes, we can simply query the corresponding FRT, and use it to update the robot plan. Computing parameter-conditioned FRT corresponds to an (offline) high-dimensional reachability problem, which we solve by leveraging recent advances in data-driven reachability analysis. Overall, our framework enables online maintenance and updates of safety assurances in human-robot interaction scenarios, even when the human prediction model is incorrect. We demonstrate our approach in several safety-critical autonomous driving scenarios, involving a state-of-the-art deep learning-based prediction model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源