论文标题

与实值函数空间相关的映射组和Sobolev-lie组的直接限制

Mapping groups associated with real-valued function spaces and direct limits of Sobolev-Lie groups

论文作者

Glockner, Helge, Tarrega, Luis

论文摘要

让$ m $成为尺寸$ m $(无边界)的紧凑平滑分歧,而$ g $是有限维的谎言组,lie代数$ g $。令$ h^{> m/2}(m,g)$是所有映射$γ\ colon m \ to g $的组,对于某些$ s> m/2 $,为$ h^s $。我们表明,$ h^{> m/2}(m,g)$可以在米尔诺的意义上成为常规的谎言组,在silva空间上建模$ h^{> m/2} $,这是希尔伯特space $ h^s(m,g)$ s> m/2 $ s> m/2 $的局部凸出直接限制,例如$ s> m/2 $作为平滑的谎言组,Hilbert-lie Groups $ h^s(m,g)$。我们还解释了$ h^s(m,g)$上的(已知的)谎言组结构是如何作为一种特殊情况,即每当开放子集的$ f(u,r)$ f(u,r)$ f(u,r)$ f(u,r)$ u $ u $ u $ r^m $时,给出了简单的axioms,请给出简单的$ r^m $。

Let $M$ be a compact smooth manifold of dimension $m$ (without boundary) and $G$ be a finite-dimensional Lie group, with Lie algebra $g$. Let $H^{>m/2}(M,G)$ be the group of all mappings $γ\colon M\to G$ which are $H^s$ for some $s>m/2$. We show that $H^{>m/2}(M,G)$ can be made a regular Lie group in Milnor's sense, modelled on the Silva space $H^{>m/2}(M,g)$ which is the locally convex direct limit of the Hilbert spaces $H^s(M,g)$ for $s>m/2$, such that $H^{>m/2}(M,G)$ is the direct limit of the Hilbert-Lie groups $H^s(M,G)$ for $s>m/2$ as a smooth Lie group. We also explain how the (known) Lie group structure on $H^s(M,G)$ can be obtained as a special case of a general construction of Lie groups $F(M,G)$ whenever real-valued function spaces $F(U,R)$ on open subsets $U$ of $R^m$ are given, subject to simple axioms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源