论文标题
一种预测器信息的多主体贝叶斯方法,用于动态功能连接
A Predictor-Informed Multi-Subject Bayesian Approach for Dynamic Functional Connectivity
论文作者
论文摘要
时间变化的功能连通性(TVFC)研究了在fMRI实验过程中大脑区域之间的相互作用如何变化。不同的单个连通状态之间的过渡可以通过驱动功能网络动态的基本生理机制的变化来调节,例如,通过学生扩张来衡量的注意力或认知工作的变化。在本文中,我们开发了一个多主体贝叶斯框架,用于估计动态功能网络,这是在fMRI实验中同时记录在每个受试者中的时变外源性生理协变量的函数。更具体地说,我们考虑了一种动态的高斯图形模型方法,其中采用了非均匀的隐藏马尔可夫模型将fMRI时间序列分类为潜在的神经系统,在整个实验过程中借用强度。假定国家转变概率随着时间的流逝和跨主题而变化,作为基础协变量的函数,允许估计复发性连接模式和受试者之间网络共享。我们的建模方法进一步通过收缩先验在网络结构中稀疏。通过引入贝叶斯错误发现率控制的基于收缩的推论,我们通过引入一个多比较程序来实现估计的图形结构中的边缘选择。我们将建模框架应用于静止状态实验,在静止状态实验中,在该实验中,与互联网测量同时收集了fMRI数据,这使我们评估了学生扩张变化的影响的异质性,以前与含肾上腺素肾上腺素含量的变化有关,对受试者的依据,以改变连接性的状态。
Time Varying Functional Connectivity (TVFC) investigates how the interactions among brain regions vary over the course of an fMRI experiment. The transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort as measured by pupil dilation. In this paper, we develop a multi-subject Bayesian framework for estimating dynamic functional networks as a function of time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach, where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states, borrowing strength over the entire time course of the experiment. The state-transition probabilities are assumed to vary over time and across subjects, as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. Our modeling approach further assumes sparsity in the network structures, via shrinkage priors. We achieve edge selection in the estimated graph structures, by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, leading us to assess the heterogeneity of the effects of changes in pupil dilation, previously linked to changes in norepinephrine-containing locus coeruleus, on the subjects' propensity to change connectivity states.