论文标题

在一般情况下,双变量偏差正常

Tail asymptotics for the bivariate skew normal in the general case

论文作者

Fung, Thomas, Seneta, Eugene

论文摘要

本文是Fung and Seneta(2016)的续集和概括,其主要结果给出了$ u \ to $ u \ to $ u \ to $λ_l(u)= p(x_1 \ leq f_1^{ - 1} { - 1}( - 1}(x_1 \ leq f_1^{ - 1}(U) sn_2(\boldsymbolα,r)$,带有$α_1=α_2=α,$,即:对于equi-skew案例中的双变量偏斜的正态分布,其中$ r $是相关矩阵,具有偏高的矩阵,带有偏高的条目$ρ,$ρ,$ρ,$ρ,$ f_i(x),$ f_i(x) Beranger等人的论文。 (2017)阐述了不包含约束$α_1=α_2=α$的上限版本,但需要约束$ 0 <ρ<1 $。在他们的附录A.3中,证明非常凝结。当翻译成Fung and Seneta(2016)的下部尾部设置时,我们发现,当$α_1=α_2=α$ $ u $的指数定期变化的功能渐近表达式确实同意,但是缓慢变化的组件,始终是y rysyptic form $ const(y log u u u)^τ$,并非等于Asymptiondy arsmptent。我们的一般方法包括$ -1 <ρ<0 $的情况,并涵盖了所有可能性。

The present paper is a sequel to and generalization of Fung and Seneta (2016) whose main result gives the asymptotic behaviour as $ u \to 0^{+}$ of $λ_L(u) = P(X_1 \leq F_1^{-1}(u) | X_2 \leq F_2^{-1}(u)),$ when $\bf{X} \sim SN_2(\boldsymbolα, R)$ with $α_1 = α_2 = α,$ that is: for the bivariate skew normal distribution in the equi-skew case, where $R$ is the correlation matrix, with off-diagonal entries $ρ,$ and $F_i(x), i=1,2$ are the marginal cdf's of $\textbf{X}$. A paper of Beranger et al. (2017) enunciates an upper-tail version which does not contain the constraint $α_1=α_2= α$ but requires the constraint $0 <ρ<1$ in particular. The proof, in their Appendix A.3, is very condensed. When translated to the lower tail setting of Fung and Seneta (2016), we find that when $α_1=α_2= α$ the exponents of $u$ in the regularly varying function asymptotic expressions do agree, but the slowly varying components, always of asymptotic form $const (-\log u)^τ$, are not asymptotically equivalent. Our general approach encompasses the case $ -1 <ρ< 0$, and covers all possibilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源