论文标题
通过Negativa的滋扰:通过数据增加调整虚假相关性
Nuisances via Negativa: Adjusting for Spurious Correlations via Data Augmentation
论文作者
论文摘要
在预测任务中,存在与该任务的不同设置相同方式与标签相关的功能。这些是语义特征或语义。与标签有不同关系的功能是令人讨厌的。例如,在从自然图像中检测母牛时,头部的形状是语义上的,但是由于母牛的图像通常具有草背景,但并非总是如此,因此背景是一种麻烦。当这些关系发生变化时,利用nuisance-Label关系的模型将面临绩效降解。构建模型可靠地进行此类更改,还需要超出功能和标签的样本之外的其他知识。例如,现有工作使用滋扰的注释或假定通过ERM训练的模型取决于麻烦。整合新型其他知识的方法可以扩大可以构建可靠模型的设置。我们开发了一种方法来利用有关语义的知识,通过在数据中损坏它们,然后使用损坏的数据来产生识别滋扰与标签之间相关性的模型。一旦确定了这些相关性,就可以使用它们来调整滋扰驱动预测的位置。我们研究语义腐败在为不同的虚假相关供电的动力方面避免了多个分布(OOD)任务的方法,例如对水鸟进行分类,自然语言推理(NLI)以及在胸部X射线中检测心脏瘤。
In prediction tasks, there exist features that are related to the label in the same way across different settings for that task; these are semantic features or semantics. Features with varying relationships to the label are nuisances. For example, in detecting cows from natural images, the shape of the head is semantic but because images of cows often have grass backgrounds but not always, the background is a nuisance. Models that exploit nuisance-label relationships face performance degradation when these relationships change. Building models robust to such changes requires additional knowledge beyond samples of the features and labels. For example, existing work uses annotations of nuisances or assumes ERM-trained models depend on nuisances. Approaches to integrate new kinds of additional knowledge enlarge the settings where robust models can be built. We develop an approach to use knowledge about the semantics by corrupting them in data, and then using the corrupted data to produce models which identify correlations between nuisances and the label. Once these correlations are identified, they can be used to adjust for where nuisances drive predictions. We study semantic corruptions in powering different spurious-correlation avoiding methods on multiple out-of-distribution (OOD) tasks like classifying waterbirds, natural language inference (NLI), and detecting cardiomegaly in chest X-rays.