论文标题

尽快:实时性能的准确语义细分

ASAP: Accurate semantic segmentation for real time performance

论文作者

Park, Jaehyun, Lee, Subin, Kim, Eon, Moon, Byeongjun, Yu, Dabeen, Yu, Yeonseung, Kim, Junghwan

论文摘要

在语义分段中采用了编码器和自我发项模块的特征融合模块。但是,这些模块的计算是昂贵的,并且在实时环境中具有操作限制。此外,在自主驾驶环境中,分割性能受到限制,其上下文垂直于道路表面,例如人,建筑物和一般物体。在本文中,我们提出了一种有效的特征融合方法,该方法具有不同的规范(FFDN),该融合在自我发作之前利用了丰富的多级规模和垂直池模块的全球环境,可以保留大多数上下文信息,同时降低垂直方向编码全球上下文的复杂性。通过这样做,我们可以处理全球空间中代表的属性,并降低额外的计算成本。此外,我们分析了包括小型和垂直特征对象在内的具有挑战性的案例中的低性能。我们达到73.1的平均相互作用(MIOU)和191的每秒帧(FPS)的平均相互作用,这与CityScapes测试数据集的最先进的结果是可比的。

Feature fusion modules from encoder and self-attention module have been adopted in semantic segmentation. However, the computation of these modules is costly and has operational limitations in real-time environments. In addition, segmentation performance is limited in autonomous driving environments with a lot of contextual information perpendicular to the road surface, such as people, buildings, and general objects. In this paper, we propose an efficient feature fusion method, Feature Fusion with Different Norms (FFDN) that utilizes rich global context of multi-level scale and vertical pooling module before self-attention that preserves most contextual information while reducing the complexity of global context encoding in the vertical direction. By doing this, we could handle the properties of representation in global space and reduce additional computational cost. In addition, we analyze low performance in challenging cases including small and vertically featured objects. We achieve the mean Interaction of-union(mIoU) of 73.1 and the Frame Per Second(FPS) of 191, which are comparable results with state-of-the-arts on Cityscapes test datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源