论文标题

部分可观测时空混沌系统的无模型预测

Machine Learning based search for Cataclysmic Variables within Gaia Science Alerts

论文作者

Mistry, D., Copperwheat, C. M., Darnley, M. J., Olier, I.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Wide-field time domain facilities detect transient events in large numbers through difference imaging. For example, Zwicky Transient Facility produces alerts for hundreds of thousands of transient events per night, a rate set to be dwarfed by the upcoming Vera Rubin Observatory. The automation provided by Machine Learning (ML) is, therefore, necessary to classify these events and select the most interesting sources for follow-up observations. Cataclysmic Variables (CVs) are a transient class that are numerous, bright, and nearby, providing excellent laboratories for the study of accretion and binary evolution. Here we focus on our use of ML to identify CVs from photometric data of transient sources published by the Gaia Science Alerts program (GSA) - a large, easily accessible resource, not fully explored with ML. The use of light curve feature extraction techniques and source metadata from the Gaia survey resulted in a Random Forest model capable of distinguishing CVs from supernovae, Active Galactic Nuclei, and Young Stellar Objects with a 92\% precision score and an 85\% hit rate. Of 13,280 sources within GSA without an assigned transient classification our model predicts the CV class for $\sim$2800. Spectroscopic observations are underway to classify a statistically significant sample of these targets to validate the performance of the model. This work puts us on a path towards the classification of rare CV subtypes from future wide-field surveys such as the Legacy Survey of Space and Time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源