论文标题

部分可观测时空混沌系统的无模型预测

Beamforming Design and Trajectory Optimization for UAV-Empowered Adaptable Integrated Sensing and Communication

论文作者

Deng, Cailian, Fang, Xuming, Wang, Xianbin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Unmanned aerial vehicle (UAV) has high flexibility and controllable mobility, therefore it is considered as a promising enabler for future integrated sensing and communication (ISAC). In this paper, we propose a novel adaptable ISAC (AISAC) mechanism in the UAV-enabled system, where the UAV performs sensing on demand during communication and the sensing duration is configured flexibly according to the application requirements rather than keeping the same with the communication duration. Our designed mechanism avoids the excessive sensing and waste of radio resources, therefore improving the resource utilization and system performance. In the UAV-enabled AISAC system, we aim at maximizing the average system throughput by optimizing the communication and sensing beamforming as well as UAV trajectory while guaranteeing the quality-of-service requirements of communication and sensing. To efficiently solve the considered non-convex optimization problem, we first propose an efficient alternating optimization algorithm to optimize the communication and sensing beamforming for a given UAV location, and then develop a low-complexity joint beamforming and UAV trajectory optimization algorithm that sequentially searches the optimal UAV location until reaching the final location. Numerical results validate the superiority of the proposed adaptable mechanism and the effectiveness of the designed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源