论文标题
从多模式MRI自动分割腮腺肿瘤的解剖学意识框架
An Anatomy-aware Framework for Automatic Segmentation of Parotid Tumor from Multimodal MRI
论文作者
论文摘要
磁共振成像(MRI)在诊断腮腺肿瘤中起着重要作用,在诊断腮腺肿瘤中,对于确定适当的治疗计划和避免不必要的手术,非常需要精确的肿瘤分割。但是,由于模棱两可的边界和各种大小的肿瘤以及与肿瘤相似的大量解剖结构的存在,该任务仍然是无聊和具有挑战性的。为了克服这些问题,我们提出了一种新型的解剖学感知框架,用于自动从多模式MRI分割腮腺肿瘤。首先,本文提出了基于变压器的多模式融合网络PT-NET。 PT-NET提取物的编码器并融合了从粗略到细的三种MRI模式的上下文信息,以获得交叉模式和多尺度肿瘤信息。解码器堆叠了不同方式的特征图,并使用通道注意机制校准了多模式信息。其次,考虑到分割模型容易受到类似的解剖结构的干扰并做出错误的预测,我们设计了解剖学意识的损失。通过计算预测分割的激活区与地面真相之间的距离,我们的损失函数迫使模型区分具有肿瘤的相似解剖结构并做出正确的预测。对腮腺肿瘤进行的MRI扫描进行了广泛的实验表明,我们的PT-NET比现有网络实现了更高的分割精度。解剖学感知的损失优于腮腺肿瘤分割的最新损失功能。我们的框架可以潜在地提高腹膜肿瘤的术前诊断和手术计划的质量。
Magnetic Resonance Imaging (MRI) plays an important role in diagnosing the parotid tumor, where accurate segmentation of tumors is highly desired for determining appropriate treatment plans and avoiding unnecessary surgery. However, the task remains nontrivial and challenging due to ambiguous boundaries and various sizes of the tumor, as well as the presence of a large number of anatomical structures around the parotid gland that are similar to the tumor. To overcome these problems, we propose a novel anatomy-aware framework for automatic segmentation of parotid tumors from multimodal MRI. First, a Transformer-based multimodal fusion network PT-Net is proposed in this paper. The encoder of PT-Net extracts and fuses contextual information from three modalities of MRI from coarse to fine, to obtain cross-modality and multi-scale tumor information. The decoder stacks the feature maps of different modalities and calibrates the multimodal information using the channel attention mechanism. Second, considering that the segmentation model is prone to be disturbed by similar anatomical structures and make wrong predictions, we design anatomy-aware loss. By calculating the distance between the activation regions of the prediction segmentation and the ground truth, our loss function forces the model to distinguish similar anatomical structures with the tumor and make correct predictions. Extensive experiments with MRI scans of the parotid tumor showed that our PT-Net achieved higher segmentation accuracy than existing networks. The anatomy-aware loss outperformed state-of-the-art loss functions for parotid tumor segmentation. Our framework can potentially improve the quality of preoperative diagnosis and surgery planning of parotid tumors.