论文标题
基于学习的Luenberger观察者的自主非线性系统的设计
Learning-based Design of Luenberger Observers for Autonomous Nonlinear Systems
论文作者
论文摘要
为非线性系统设计Luenberger的观察者涉及将状态转换为替代坐标系的挑战性任务,可能具有较高的维度,该系统可能是渐近稳定的,直至输出注入。然后,观察者通过反转转换图来估计原始坐标中系统的状态。但是,找到可以得出逆的合适的注射转换仍然是一般非线性系统的主要挑战。我们提出了一种新颖的方法,该方法使用受监督的物理知识神经网络近似转化及其逆。我们的方法表现出对当代方法的卓越概括能力,并证明了神经网络的近似误差和系统不确定性的鲁棒性。
Designing Luenberger observers for nonlinear systems involves the challenging task of transforming the state to an alternate coordinate system, possibly of higher dimensions, where the system is asymptotically stable and linear up to output injection. The observer then estimates the system's state in the original coordinates by inverting the transformation map. However, finding a suitable injective transformation whose inverse can be derived remains a primary challenge for general nonlinear systems. We propose a novel approach that uses supervised physics-informed neural networks to approximate both the transformation and its inverse. Our method exhibits superior generalization capabilities to contemporary methods and demonstrates robustness to both neural network's approximation errors and system uncertainties.