论文标题

自加工孤子

Self-accelerating solitons

论文作者

Malomed, Boris A.

论文摘要

产生一维(1d和2d)孤子的基本模型,例如Bose-einstein冷凝物(BECS)的Gross-Pitaevskii(GP)方程,具有Galilean不变性,这使得从Quiescent os产生了移动孤子的家族。一个具有挑战性的问题是找到承认唯一的稳定自加工(SA)运动的模型。 SA模式在线性系统中以通风波的形式闻名,但它们的局部状态较差。这篇简短的评论介绍了两个组件的BEC模型,这使得可以预测SA Soliton。在一个系统中,一对具有有效质量相反符号的相互作用的1D孤子是在二进制BEC中产生的,该二进制BEC被捕获在光晶格电位中。在这种情况下,相反的相互作用力,作用于阳性和负质量的孤子子,产生相等的加速度,而总动量是保守的。第二个模型基于两个原子组件的GP方程系统,该系统由微波场共互联。后一个模型会对加速参考框架产生精确的转换,从而预测1D和2D稳定的SA Soliton,包括涡旋环。

Basic models which give rise to one- and two-dimensional (1D and 2D) solitons, such as the Gross-Pitaevskii (GP) equations for Bose-Einstein condensates (BECs), feature the Galilean invariance, which makes it possible to generate families of moving solitons from quiescent ones. A challenging problem is to find models admitting stable self-accelerating (SA) motion of solitons. SA modes are known in linear systems in the form of Airy waves, but they are poorly localized states. This brief review presents two-component BEC models which make it possible to predict SA solitons. In one system, a pair of interacting 1D solitons with opposite signs of the effective mass is created in a binary BEC trapped in an optical-lattice potential. In that case, opposite interaction forces, acting on the solitons with positive and negative masses, produce equal accelerations, while the total momentum is conserved. The second model is based on a system of GP equations for two atomic components, which are resonantly coupled by a microwave field. The latter model produces an exact transformation to an accelerating references frame, thus predicting 1D and 2D stable SA solitons, including vortex rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源