论文标题
Anoml-iot:物联网的端到端重新配置的多协议异常检测管道
AnoML-IoT: An End to End Re-configurable Multi-protocol Anomaly Detection Pipeline for Internet of Things
论文作者
论文摘要
无处不在的计算的快速发展使使用微控制器作为边缘设备。这些设备用于开发使用机器学习(ML)模型的真正分布的机制。但是,将ML模型集成到边缘设备需要了解各种软件工具,例如编程语言和特定于领域的知识。异常检测是需要高水平的专业知识以实现有希望的结果的领域之一。在这项工作中,我们提出了Anoml,它是一条端到端的数据科学管道,它允许集成多个无线通信协议,异常检测算法,部署到边缘,雾和云平台,并具有最小的用户交互。我们通过减少由于物联网环境的异质性而降低形成的障碍来促进物联网异常检测机制的发展。提出的管道支持四个主要阶段:(i)数据摄入,(ii)模型培训,(iii)模型部署,(iv)推理和维护。我们使用两个异常检测数据集评估了管道,同时比较了不同节点内几种机器学习算法的效率。我们还提供开发工具的源代码(https://gitlab.com/iotgarage/anoml-iot-analytics),这是管道的主要组成部分。
The rapid development in ubiquitous computing has enabled the use of microcontrollers as edge devices. These devices are used to develop truly distributed IoT-based mechanisms where machine learning (ML) models are utilized. However, integrating ML models to edge devices requires an understanding of various software tools such as programming languages and domain-specific knowledge. Anomaly detection is one of the domains where a high level of expertise is required to achieve promising results. In this work, we present AnoML which is an end-to-end data science pipeline that allows the integration of multiple wireless communication protocols, anomaly detection algorithms, deployment to the edge, fog, and cloud platforms with minimal user interaction. We facilitate the development of IoT anomaly detection mechanisms by reducing the barriers that are formed due to the heterogeneity of an IoT environment. The proposed pipeline supports four main phases: (i) data ingestion, (ii) model training, (iii) model deployment, (iv) inference and maintaining. We evaluate the pipeline with two anomaly detection datasets while comparing the efficiency of several machine learning algorithms within different nodes. We also provide the source code (https://gitlab.com/IOTGarage/anoml-iot-analytics) of the developed tools which are the main components of the pipeline.