论文标题
$ζ$ -Pade SRWS理论,阶段最低
$ζ$-Pade SRWS theory with lowest order approximation
论文作者
论文摘要
在我以前关于srws- $ζ$理论的论文中[y.Ueoka,vixra:2205.014,2022],我提出了正交类中安德森过渡的粗糙平均典型关键绿色功能的粗糙平均概述的近似值。在本文中,我通过用积分代替求和来删除一系列典型关键绿色功能的粗略概述。胶近似值用于总结。从上部关键维度获得了临界指数$ν$的扰动序列。关键指数的维数依赖性再次与Riemann $ζ$函数直接相关。与以前的研究相比,较低关键指数的自由度改善了估计。当我固定等于两个等于两个的较低临界维度时,与临界指数的拟合曲线估计相比,我获得了临界指数的相似估计[E.Tarquini等人,PhysRevb.95(2017)094204]。 1
In my previous paper about SRWS-$ζ$ theory[Y.Ueoka,viXra:2205.014,2022], I proposed an approximation of rough averaged summation of typical critical Green function for the Anderson transition in the Orthogonal class. In this paper, I remove a rough approximate summation for the series of the typical critical Green function by replacing summation with integral. Pade approximant is used to take a summation. The perturbation series of the critical exponent $ν$ of localization length from upper critical dimension is obtained. The dimensional dependence of the critical exponent is again directly related with Riemann $ζ$ function. Degree of freedom about lower critical exponent improve estimate compared with previous studies. When I fix lower critical dimension equal to two, I obtained similar estimate of the critical exponent compared with fitting curve estimate of the critical exponent[E.Tarquini et al.,PhysRevB.95(2017)094204]. 1