论文标题
第二个牛顿后流体动力方程的平面波分析
Plane wave analysis of the second post-Newtonian hydrodynamic equations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The second post-Newtonian hydrodynamic equations are analyzed within the framework of a plane wave solution. The hydrodynamic equations for the mass and momentum density are coupled with six Poisson equations for the Newtonian and post-Newtonian gravitational potentials. Perturbations of the basic fields and gravitational potentials from a background state by assuming plane wave representations lead to a dispersion relation where the Jeans instability condition emerges. The influence of the first and second post-Newtonian approximations on the Jeans mass is determined. It was shown that the relative difference of the first post-Newtonian and the Newtonian Jeans masses is negative while the one of the second post-Newtonian approximation is positive. The two contributions imply a smaller mass needed for an overdensity to initiate the gravitational collapse than the one given by the Newtonian theory.