论文标题
迈向基于人造智能的光学闪烁计:缩放问题
Towards an Artificial-Intelligence-Based Optical Scintillometer: Scaling Issue
论文作者
论文摘要
考虑了基于深度神经网络(DNN)的强度闪烁模式的处理,大气湍流强度(CN2参数)感应。结果表明,通过使用对名义距离L0训练的DNN获得的CN2值的缩放,可以避免使用传播距离变化的DNN重新训练。可以使用源自Kolmogorov湍流理论(基于理论的缩放)或通过波播数值建模和模拟(基于M&S的缩放)得出的分析表达来获得所需的CN2缩放系数。
Atmospheric turbulence strength (Cn2 parameter) sensing based on processing of intensity scintillation patterns with deep neural network (DNN) is considered. It is shown that DNN re-training with propagation distance change can be avoided by scaling of Cn2 values obtained using a DNN trained for a nominal distance L0 . The required Cn2 scaling factor can be obtained using either an analytical expression derived from the Kolmogorov turbulence theory (theory-based scaling), or through wave-optics numerical modeling and simulations (M&S-based scaling).