论文标题

Kähler歧管和非正式量化的可定量功能

Quantizable functions on Kähler manifolds and non-formal quantization

论文作者

Chan, Kwokwai, Leung, Naichung Conan, Li, Qin

论文摘要

应用在我们以前的工作中构建的Fedosov连接时,我们在Kähler歧管上的平滑功能(密集)子片$ x $中,该函数接受了非正式变形量化。当$ x $是前量子器并且FedOsov连接满足完整性条件时,我们证明该功能可以量化为扭曲的差分运算符(TDO)的捆绑,这与与量子前线套件相关的功能是同构的。我们还表明,这种可定量函数的示例由量子力矩图的图像给出。

Applying the Fedosov connections constructed in our previous work, we find a (dense) subsheaf of smooth functions on a Kähler manifold $X$ which admits a non-formal deformation quantization. When $X$ is prequantizable and the Fedosov connection satisfies an integrality condition, we prove that this subsheaf of functions can be quantized to a sheaf of twisted differential operators (TDO), which is isomorphic to that associated to the prequantum line bundle. We also show that examples of such quantizable functions are given by images of quantum moment maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源