论文标题

在开放研究知识图中将语义谓词聚类

Clustering Semantic Predicates in the Open Research Knowledge Graph

论文作者

Oghli, Omar Arab, D'Souza, Jennifer, Auer, Sören

论文摘要

当语义描述知识图(kgs)时,用户必须对词汇进行关键选择(即谓词和资源)。 KG建设的成功取决于共享词汇的融合,以确定含义。新的KG结构的典型生命周期可以定义如下:图形构造经验术语差异的新生阶段,而后来的Graph构造经验术语术语融合和重用的阶段。在本文中,我们描述了我们的方法量化了两种基于AI的聚类算法,以推荐有关开放研究知识图(ORKG)中资源的谓词(在RDF语句中)https://orkg.org/。这样的服务推荐现有的谓词来为学术出版物的新传入数据进行语义,这对于培养ORKG中的术语融合至关重要。我们的实验显示出非常有希望的结果:高精度,线性运行时性能相对较高。此外,这项工作还提供了对谓语群体的新颖见解,这些谓语群体自动将其作为通用的语言化模式自动呈现,用于跨越44个研究领域的学术知识的语义化。

When semantically describing knowledge graphs (KGs), users have to make a critical choice of a vocabulary (i.e. predicates and resources). The success of KG building is determined by the convergence of shared vocabularies so that meaning can be established. The typical lifecycle for a new KG construction can be defined as follows: nascent phases of graph construction experience terminology divergence, while later phases of graph construction experience terminology convergence and reuse. In this paper, we describe our approach tailoring two AI-based clustering algorithms for recommending predicates (in RDF statements) about resources in the Open Research Knowledge Graph (ORKG) https://orkg.org/. Such a service to recommend existing predicates to semantify new incoming data of scholarly publications is of paramount importance for fostering terminology convergence in the ORKG. Our experiments show very promising results: a high precision with relatively high recall in linear runtime performance. Furthermore, this work offers novel insights into the predicate groups that automatically accrue loosely as generic semantification patterns for semantification of scholarly knowledge spanning 44 research fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源