论文标题
部分可观测时空混沌系统的无模型预测
Tripletformer for Probabilistic Interpolation of Irregularly sampled Time Series
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Irregularly sampled time series data with missing values is observed in many fields like healthcare, astronomy, and climate science. Interpolation of these types of time series is crucial for tasks such as root cause analysis and medical diagnosis, as well as for smoothing out irregular or noisy data. To address this challenge, we present a novel encoder-decoder architecture called "Tripletformer" for probabilistic interpolation of irregularly sampled time series with missing values. This attention-based model operates on sets of observations, where each element is composed of a triple of time, channel, and value. The encoder and decoder of the Tripletformer are designed with attention layers and fully connected layers, enabling the model to effectively process the presented set elements. We evaluate the Tripletformer against a range of baselines on multiple real-world and synthetic datasets and show that it produces more accurate and certain interpolations. Results indicate an improvement in negative loglikelihood error by up to 32% on real-world datasets and 85% on synthetic datasets when using the Tripletformer compared to the next best model.