论文标题

相对于$ c $ - $ fp_n $ - 注射和$ c $ - $ fp_ {n} $ - 平面模块

Foxby equivalence relative to $C$-$fp_n$-injective and $C$-$fp_{n}$-flat modules

论文作者

Amini, Mostafa, Vahidi, Alireza, Rezaei, Farideh

论文摘要

令$ r $和$ s $为戒指,$ c = {} _sc_r $ a(忠实)半单字化bimodule,$ n $ a正整数或$ n = \ \ infty $。在本文中,我们介绍了$ c $ - $ fp_n $ -Indimentive $ r $ - modules和$ c $ - $ fp_n $ -flat $ s $ s $ modules,作为一些已知模块的普遍化,例如$ c $ - $ c $ - $ fp_ {n} $ - $ c $ - $ c $ - $ - $ - $ - $ - $ c $ - $ fp_ {n} $ - flat(resp。$ c $ -weak flat)$ s $ modules。然后,我们研究$ c $ - $ fp_ {n} $ - 注入和$ c $ - $ fp_ {n} $ - 模块的平面尺寸,其中这些模块的类别,即$ cfp_ni(r)_ {\ leq k} $和$ cfp_nf(r)_ {\ leq k} $和$ cfp_nf(s)我们研究了相对于这些类别的Foxby等效性,以及$ cfp_ni(r)_ {\ leq k} $和$ cfp_nf(s)_ {\ leq k} $ preendevens and Covers的存在。最后,我们研究了这些类别的交换特性,以及在几乎出色的环范围内,在几乎出色的范围下,在额外的范围内(分别为重剂)和狐狸等效性。

Let $R$ and $S$ be rings, $C= {}_SC_R$ a (faithfully) semidualizing bimodule, and $n$ a positive integer or $n=\infty$. In this paper, we introduce the concepts of $C$-$fp_n$-injective $R$-modules and $C$-$fp_n$-flat $S$-modules as a common generalization of some known modules such as $C$-$FP_{n}$-injective (resp. $C$-weak injective) $R$-modules and $C$-$FP_{n}$-flat (resp. $C$-weak flat) $S$-modules. Then we investigate $C$-$fp_{n}$-injective and $C$-$fp_{n}$-flat dimensions of modules, where the classes of these modules, namely $Cfp_nI(R)_{\leq k}$ and $Cfp_nF(S)_{\leq k}$, respectively. We study Foxby equivalence relative to these classes, and also the existence of $Cfp_nI(R)_{\leq k}$ and $Cfp_nF(S)_{\leq k}$ preenvelopes and covers. Finally, we study the exchange properties of these classes, as well as preenvelopes (resp. precovers) and Foxby equivalence, under almost excellent extensions of rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源