论文标题
无线网络中联合通信和参数估计的覆盖率和速率
Coverage and Rate of Joint Communication and Parameter Estimation in Wireless Networks
论文作者
论文摘要
从信息理论的角度来看,联合通信和传感(JCAS)代表了通信网络功能的自然概括。但是,它需要从多目标角度重新评估网络性能。我们开发了一个新颖的数学框架,用于表征JCAS网络中的感应和通信覆盖率和千古率。我们基于共同信息采用传感参数估计的公式,以将覆盖率概率和ergodic速率的概念扩展到雷达设置。我们将传感覆盖率概率定义为与典型雷达目标相关的感兴趣参数的信息率超过一定阈值的概率,并且作为上述信息速率的空间平均值,将千古速率感知到了。使用此框架,我们使用共享波形,定向光束形成和单稳态传感分析了MMWave JCAS网络的下行感测和通信覆盖范围和速率。利用随机几何形状的工具,我们得出了这些数量的上限和下限。我们还开发了几种一般的技术结果,包括:i)一种通用方法,用于在射击噪声过程的拉普拉斯变换上获得封闭形式的上限和下限,ii)h {Ö} lder对谐波均值设置的不平等的新类似物,以及iiii)laplace和mellin transform thrans transic transwiss的关系。我们使用派生的边界来数字研究JCAS网络在不同的基站和阻滞密度下的性能。在几种见解中,我们的数值分析表明,与通信相比,网络致密化提高了感知SINR的性能。
From an information theoretic perspective, joint communication and sensing (JCAS) represents a natural generalization of communication network functionality. However, it requires the re-evaluation of network performance from a multi-objective perspective. We develop a novel mathematical framework for characterizing the sensing and communication coverage probability and ergodic rate in JCAS networks. We employ a formulation of sensing parameter estimation based on mutual information to extend the notions of coverage probability and ergodic rate to the radar setting. We define sensing coverage probability as the probability that the rate of information extracted about the parameters of interest associated with a typical radar target exceeds some threshold, and sensing ergodic rate as the spatial average of the aforementioned rate of information. Using this framework, we analyze the downlink sensing and communication coverage and rate of a mmWave JCAS network employing a shared waveform, directional beamforming, and monostatic sensing. Leveraging tools from stochastic geometry, we derive upper and lower bounds for these quantities. We also develop several general technical results including: i) a generic method for obtaining closed form upper and lower bounds on the Laplace Transform of a shot noise process, ii) a new analog of H{ö}lder's Inequality to the setting of harmonic means, and iii) a relation between the Laplace and Mellin Transforms of a non-negative random variable. We use the derived bounds to numerically investigate the performance of JCAS networks under varying base station and blockage density. Among several insights, our numerical analysis indicates that network densification improves sensing SINR performance -- in contrast to communications.