论文标题
将毕达哥拉斯的字段数量限制在$ 2^n+1 $
Bounding the Pythagoras number of a field by $2^n+1$
论文作者
论文摘要
给定一个正整数$ n $,在一个字段上,将其毕达哥拉斯号码限制为$ 2^n+1 $。 $ n = 1 $的条件按曲线的功能字段来满足$ \ mathbb {r} $的迭代形式功率系列字段,以及$ \ mathbb {r}(\!(t_0,t_1,t_1)\!)$的有限字段扩展。在这两种情况下,一个人都可以在毕达哥拉斯号码上检索上限$ 3 $。这里介绍的新方法可能有助于建立更普遍的$ 2^n+1 $,作为pythagoras的上限,用于pythagoras的曲线功能字段数量$ \ mathbb {r}(\!(\!(t_1,\ dots,dots,t_n)\!)$,以及$ \ \ m m mathbb {r}(t_ r}(t_ $}(t_ t_ t _ t _ t_t_),
Given a positive integer $n$, a sufficient condition on a field is given for bounding its Pythagoras number by $2^n+1$. The condition is satisfied for $n=1$ by function fields of curves over iterated formal power series fields over $\mathbb{R}$, as well as by finite field extensions of $\mathbb{R}(\!(t_0,t_1)\!)$. In both cases, one retrieves the upper bound $3$ on the Pythagoras number. The new method presented here might help to establish more generally $2^n+1$ as an upper bound for the Pythagoras number of function fields of curves over $\mathbb{R}(\!(t_1,\dots,t_n)\!)$ and for finite field extensions of $\mathbb{R}(\!(t_0,\dots,t_n)\!)$.