论文标题
广义边界条件的物理意义:$ \ text {ads} _2 \ times \ times \ mathbb {s}^2 $上的unruh-dewitt检测器观点
Physical significance of generalized boundary conditions: an Unruh-DeWitt detector viewpoint on $\text{AdS}_2 \times \mathbb{S}^2$
论文作者
论文摘要
在$ \ text {ads} _2 \ times \ mathbb {s}^2 $上,我们构建了真正的klein-gordon场的地面和热状态的两点相关函数,该函数接纳了广义$(γ,v)$ - 边界条件。我们遵循[1]最近在[1]中概述的二级解决方案选择的处方。对于他们每个人,我们获得了一个由$γ\ in \ left [0,\fracπ{2} \ right] $参数参数的可允许边界条件的家族。我们研究它们如何影响静态Unruh-Dewitt检测器的响应。后者不仅感知到$γ$的变化,而且还以质量不同的方式区分了二级解决方案的两个家族,而奇怪的是时尚。我们的结果再次强调了在及时的边界上选择边界条件的自由的存在,该边界比预期更大,具有显着相关的物理意义。
On $\text{AdS}_2 \times \mathbb{S}^2$, we construct the two-point correlation functions for the ground and thermal states of a real Klein-Gordon field admitting generalized $(γ,v)$-boundary conditions. We follow the prescription recently outlined in [1] for two different choices of secondary solutions. For each of them, we obtain a family of admissible boundary conditions parametrized by $γ\in\left[0,\fracπ{2}\right]$. We study how they affect the response of a static Unruh-DeWitt detector. The latter not only perceives variations of $γ$, but also distinguishes between the two families of secondary solutions in a qualitatively different, and rather bizarre, fashion. Our results highlight once more the existence of a freedom in choosing boundary conditions at a timelike boundary which is greater than expected and with a notable associated physical significance.