论文标题
弯曲时空中标量和狄拉克场的非相关性极限
Non-relativistic limit of scalar and Dirac fields in curved spacetime
论文作者
论文摘要
我们从弯曲时空中标量和狄拉克场的非相关性极限从第一原则赋予。我们的目的是找到对受牛顿重力影响的粒子量子理论的一般相对论校正,如今是一种实验访问的政权。我们认为,在量子系统中发现一般相对论效应的不断改善的测量准确性和理论兴趣需要对Schrödinger-Newtonian理论进行校正。我们严格地通过弯曲时空中完全相对论量子理论的非相对论量子理论的非相对论限制来确定这些校正。对于弯曲的静态空间,我们展示了非惯性观察者(等效地,在引力场的存在下观察者)如何通过粒子重力相互作用将标量场与迪拉克场区分开。我们研究了林德勒时空,并讨论了由此产生的非相关性汉密尔顿人之间的差异。我们发现,对于足够大的加速度,重力自旋耦合在标量场的校正上占主导地位,从而促进了狄拉克颗粒作为观察量子粒子现象学中非牛顿重力的最佳候选者。
We give from first principles the non-relativistic limit of scalar and Dirac fields in curved spacetime. We aim to find general relativistic corrections to the quantum theory of particles affected by Newtonian gravity, a regime nowadays experimentally accessible. We believe that the ever-improving measurement accuracy and the theoretical interest in finding general relativistic effects in quantum systems require the introduction of corrections to the Schrödinger-Newtonian theory. We rigorously determine these corrections by the non-relativistic limit of fully relativistic quantum theories in curved spacetime. For curved static spacetimes, we show how a non-inertial observer (equivalently, an observer in the presence of a gravitational field) can distinguish a scalar field from a Dirac field by particle-gravity interaction. We study the Rindler spacetime and discuss the difference between the resulting non-relativistic Hamiltonians. We find that for sufficiently large acceleration, the gravity-spin coupling dominates over the corrections for scalar fields, promoting Dirac particles as the best candidates for observing non-Newtonian gravity in quantum particle phenomenology.