论文标题
没有父子系统代码的Floquet代码
Floquet codes without parent subsystem codes
论文作者
论文摘要
我们在两个和三个维度中提出了一类新的错误纠正动态代码,这些代码与任何父母代码没有明确的连接。我们称为CSS HoneyComb代码的二维代码在几何上与Hastings和Haah的Honeycomb代码相似,并且还动态嵌入了瞬时的复曲面代码。但是,与蜂窝代码不同,它具有明确的CSS结构,其规格检查并未形成子系统代码。然而,我们表明我们的动态协议可以保存逻辑信息,并具有校正错误的阈值。我们将此结构推广到三个维度,并获得一个代码,该代码在实现两个I型Fracton型号(Checkerboard和X-Cube型号)之间交替交替。最后,我们通过显示在两个协议之间随机切换而没有信息丢失的同时仍测量误差综合症之间随机切换的可能性,以显示CSS蜂窝代码协议和蜂窝代码的兼容性。我们将其称为更通用的大道结构“动态树代码”,我们也将其推广到三个维度。我们构建了一个概率有限的自动机处方,该处方会生成动态树代码,以纠正任何单Qubit Pauli错误,并可以看作是迈向开发实用性耐故障随机代码的一步。
We propose a new class of error-correcting dynamic codes in two and three dimensions that has no explicit connection to any parent subsystem code. The two-dimensional code, which we call the CSS honeycomb code, is geometrically similar to that of the honeycomb code by Hastings and Haah, and also dynamically embeds an instantaneous toric code. However, unlike the honeycomb code it possesses an explicit CSS structure and its gauge checks do not form a subsystem code. Nevertheless, we show that our dynamic protocol conserves logical information and possesses a threshold for error correction. We generalize this construction to three dimensions and obtain a code that fault-tolerantly alternates between realizing two type-I fracton models, the checkerboard and the X-cube model. Finally, we show the compatibility of our CSS honeycomb code protocol and the honeycomb code by showing the possibility of randomly switching between the two protocols without information loss while still measuring error syndromes. We call this more general aperiodic structure `dynamic tree codes', which we also generalize to three dimensions. We construct a probabilistic finite automaton prescription that generates dynamic tree codes correcting any single-qubit Pauli errors and can be viewed as a step towards the development of practical fault-tolerant random codes.