论文标题
调谐原子级铝等离子隧道连接中的光发射交叉
Tuning light emission crossovers in atomic-scale aluminum plasmonic tunnel junctions
论文作者
论文摘要
原子尺寸的等离子隧道连接具有基本兴趣,在各种光电应用中,最小的芯片光源源具有巨大的希望。从单电子或高阶多电子非弹性隧道到来自热载体的稳态种群的重新组合,已经提出了电动等离子体隧道连接的光发射的几种机制。通过逐步改变铝连接的隧道电导,我们首次通过这些可能性调整了主要的光发射机制,从而在每个制度中找到与理论的定量一致性。利益的能量范围的等离子共振提高了光子产量的两个数量级。这些结果表明,主要的发射机制是通过隧道速率,热载体松弛时间标准和连接等离子体特性的组合来设定的。
Atomic sized plasmonic tunnel junctions are of fundamental interest, with great promise as the smallest on-chip light sources in various optoelectronic applications. Several mechanisms of light emission in electrically driven plasmonic tunnel junctions have been proposed, from single-electron or higher order multi-electron inelastic tunneling to recombination from a steady-state population of hot carriers. By progressively altering the tunneling conductance of an aluminum junction, we tune the dominant light emission mechanism through these possibilities for the first time, finding quantitative agreement with theory in each regime. Improved plasmonic resonances in the energy range of interest increase photon yields by two orders of magnitude. These results demonstrate that the dominant emission mechanism is set by a combination of tunneling rate, hot carrier relaxation timescales, and junction plasmonic properties.