论文标题
使用深处的离线增强学习进行安全机械通风处理
Towards Safe Mechanical Ventilation Treatment Using Deep Offline Reinforcement Learning
论文作者
论文摘要
机械通气是肺部损伤患者的生命支持的一种关键形式。需要医疗保健工人为每个患者不断调整呼吸机设置,这是一项具有挑战性且耗时的任务。因此,开发自动化决策支持工具以优化通风处理将是有益的。我们提出了DeepVent,这是一种基于保守的Q学习(CQL)脱机深钢筋学习(DRL),该学习学会学会预测患者的最佳呼吸机参数,以促进90天的生存。我们设计了与临床相关的中间奖励,可鼓励患者生命力的持续改善,并解决RL稀疏奖励的挑战。我们发现,如最近的临床试验中所述,深入建议在安全范围内进行通风参数。 CQL算法通过减轻对分布状态/行动的价值估计的高估来提供其他安全性。我们使用拟合的Q评估(FQE)评估我们的代理,并证明它的表现优于MIMIC-III数据集的医生。
Mechanical ventilation is a key form of life support for patients with pulmonary impairment. Healthcare workers are required to continuously adjust ventilator settings for each patient, a challenging and time consuming task. Hence, it would be beneficial to develop an automated decision support tool to optimize ventilation treatment. We present DeepVent, a Conservative Q-Learning (CQL) based offline Deep Reinforcement Learning (DRL) agent that learns to predict the optimal ventilator parameters for a patient to promote 90 day survival. We design a clinically relevant intermediate reward that encourages continuous improvement of the patient vitals as well as addresses the challenge of sparse reward in RL. We find that DeepVent recommends ventilation parameters within safe ranges, as outlined in recent clinical trials. The CQL algorithm offers additional safety by mitigating the overestimation of the value estimates of out-of-distribution states/actions. We evaluate our agent using Fitted Q Evaluation (FQE) and demonstrate that it outperforms physicians from the MIMIC-III dataset.