论文标题

超导电子电子设备的可伸缩性:AC时钟和通量偏置变压器施加的限制

Scalability of Superconductor Electronics: Limitations Imposed by AC Clock and Flux Bias Transformers

论文作者

Tolpygo, Sergey K.

论文摘要

通量变压器是所有超导数字集成电路的必要组成部分相邻变压器之间的耦合。前者设置了变压器中的最小线宽度和相互耦合的长度,而后者则设置了变压器之间的最小间距。超导(NB)电线的线宽下降会增加变压器次级的动力电感,从而减少其长度和相互耦合到初级。这限制了变压器的最小尺寸。结果,有一个最小线宽〜100 nm,它决定了最大可实现的集成规模。以AQFP电路为例,我们计算了在MIT Lincoln实验室开发的各种类型的变压器和电感的AQFP数密度对线宽的依赖性,并将最大电路密度估计为每CM^2的最大电路密度为几百万AQFP。我们提出了一个高级制造工艺,以增加AQFP和其他AC驱动电路的密度10倍。在此过程中,电感器由沉积在高动能材料(例如NBN)层上的几何电感材料(NB)的图案化双层形成。双层层的单个模式允许在各种电感范围内创建带状电感器,从典型的低值到NB stripline到NBN薄膜的典型高值,并保留具有极低骨化的条纹变压器中的足够相互耦合。

Flux transformers are the necessary component of all superconductor digital integrated circuits utilizing ac power for logic cell excitation and clocking, and flux biasing, e.g., Adiabatic Quantum Flux Parametron (AQFP), Reciprocal Quantum Logic, superconducting sensor arrays, qubits, etc. We consider limitations to the integration scale (device number density) imposed by the critical current of the ac power transmission lines and cross coupling between the adjacent transformers. The former sets the minimum line width and the mutual coupling length in the transformer, whereas the latter sets the minimum spacing between the transformers. Decreasing linewidth of superconducting (Nb) wires increases kinetic inductance of the transformer's secondary, decreasing its length and mutual coupling to the primary. This limits the minimum size of transformers. As a result, there is a minimum linewidth ~100 nm which determines the maximum achievable scale of integration. Using AQFP circuits as an example, we calculate dependence of the AQFP number density on linewidth for various types of transformers and inductors available in the SFQ5ee fabrication process developed at MIT Lincoln Laboratory, and estimate the maximum circuit density as a few million AQFPs per cm^2. We propose an advanced fabrication process for a 10x increase in the density of AQFP and other ac-powered circuits. In this process, inductors are formed from a patterned bilayer of a geometrical inductance material (Nb) deposited over a layer of high kinetic inductance material (e.g., NbN). Individual pattering of the bilayer layers allows to create stripline inductors in a wide range of inductances, from the low values typical to Nb striplines to the high values typical for NbN thin films, and preserve sufficient mutual coupling in stripline transformers with extremely low crosstalk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源