论文标题

非均匀双相方程的弱和粘度解的等效性

Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation

论文作者

Fang, Yuzhou, Radulescu, Vicentiu D., Zhang, Chao

论文摘要

我们建立了弱和粘度解决方案与非均匀双相方程之间的等价性,低阶项$$ - {\ rm div}(| du |^{p-2} du+a(x)| du+a(x)| du |^{q-2} du) $$我们在系数$ a(x)$,指数$ p,q $和非线性项$ f $上找到一些适当的假设,以表明具有{\ em a a Ligi} lipChitz连续性的粘度解决方案是由于$ \ inf $ \ \ sup $($ \ sup $)的薄弱解决方案。可以通过比较原则结论反向含义。此外,我们验证有界的粘度解决方案完全是Lipschitz的连续,这也是独立的。

We establish the equivalence between weak and viscosity solutions to the nonhomogeneous double phase equation with lower-order term $$ -{\rm div}(|Du|^{p-2}Du+a(x)|Du|^{q-2}Du)=f(x,u,Du),\quad 1<p\le q<\infty, a(x)\ge0. $$ We find some appropriate hypotheses on the coefficient $a(x)$, the exponents $p, q$ and the nonlinear term $f$ to show that the viscosity solutions with {\em a priori} Lipschitz continuity are weak solutions of such equation by virtue of the $\inf$($\sup$)-convolution techniques. The reverse implication can be concluded through comparison principles. Moreover, we verify that the bounded viscosity solutions are exactly Lipschitz continuous, which is also of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源