论文标题
混合量子古典模拟
Hybrid Quantum Classical Simulations
论文作者
论文摘要
我们报告了量子计算的两个主要混合应用,即量子近似优化算法(QAOA)和变异量子eigensolver(VQE)。两者都是混合量子经典算法,因为它们需要经典的中央处理单元和量子处理单元之间的增量通信以解决问题。我们发现,与随机猜测相比,QAOA对更大的问题要好得多,但需要大量的计算资源。相比之下,使用较少的计算资源可以达到相同的有希望的缩放行为,称为近似量子退火(AQA)的量子退火的粗略版本。对于VQE,当使用适当的初始状态和参数选择时,我们发现合理的结果近似于海森堡模型的基态能量。我们对一般准动力进化的设计和实施进一步改善了这些结果。
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE). Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem. We find that the QAOA scales much better to larger problems than random guessing, but requires significant computational resources. In contrast, a coarsely discretised version of quantum annealing called approximate quantum annealing (AQA) can reach the same promising scaling behaviour using much less computational resources. For the VQE, we find reasonable results in approximating the ground state energy of the Heisenberg model when suitable choices of initial states and parameters are used. Our design and implementation of a general quasi-dynamical evolution further improves these results.