论文标题

可简化的双汇合HEUN方程和原点的一般对称展开

The reducible double confluent Heun equation and a general symmetric unfolding of the origin

论文作者

Stoyanova, Tsvetana

论文摘要

可简化的双汇合HEUN方程(DCHE)是唯一的DCHE,其对称性展开会导致Fuchsian方程。与通用HEUN方程相反,展开的Fuchsian方程具有5个单数点:$ x_l = - \ sqrt {\ varepsilon},x_r = \ sqrt {\ varepsilon},x__ {ll} = - 1/\ sqrt {\ sqrt { x_ {rr} = 1/\ sqrt {\ varepsilon} $和$ x _ {\ infty} = \ infty $。 We prove that the monodromy matrix around the regular resonant singularity at the origin is realizable as a limit of the product of the monodromy matrices around resonant singularities $x_L$ and $x_R$ when $\sqrt{\varepsilon} \to 0$ while the Stokes matrix at the irregular singularity at the origin is a limit of the part of the monodromy谐振奇异性$ x_l $周围的矩阵。我们还表明,可简化的DCHE在整个$ \ mathbb {c}^*$中具有全体形态解决方案,并且仅当方程的参数通过第一类的贝塞尔函数连接,并取决于原始的非零chracteristic指数。

The reducible double confluent Heun equation (DCHE) is the only DCHE whose general symmetric unfolding leads to a Fuchsian equation. Contrary to general Heun equation the unfolded Fuchsian equation has 5 singular points : $x_L=-\sqrt{\varepsilon}, x_R=\sqrt{\varepsilon}, x_{LL}=-1/\sqrt{\varepsilon}, x_{RR}=1/\sqrt{\varepsilon}$ and $x_{\infty}=\infty$. We prove that the monodromy matrix around the regular resonant singularity at the origin is realizable as a limit of the product of the monodromy matrices around resonant singularities $x_L$ and $x_R$ when $\sqrt{\varepsilon} \to 0$ while the Stokes matrix at the irregular singularity at the origin is a limit of the part of the monodromy matrix around the resonant singularity $x_L$. We also show that the reducible DCHE possesses a holomorphic solution in the whole $\mathbb{C}^*$ if and only if the parameters of the equation are connected by a Bessel function of first kind and order depending on the non-zero chracteristic exponent at the origin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源