论文标题

对数基础改变定理和对数规范除数积极性的平稳下降

Logarithmic base change theorem and smooth descent of positivity of log canonical divisor

论文作者

Park, Sung Gi

论文摘要

我们证明了对数基础的基础定理,用于推动pluri-canonical束的推动,并使用它来推断日志规范除数的阳性特性通过光滑的投射形态下降。作为一个应用程序,对于$κ(x)\ ge 0 $和$ -k_y $ big,对于过滤型形态$ f:x \ to y $,我们证明$ y \ y \ y \ y \setminusΔ(f)$是log enter nog类型,其中$δ(f)$是歧视轨迹。特别是,当$ y = \ mathbb {p}^n $时,我们有$ \dimδ(f)= n-1 $和$ \ m atrm {deg} \,δ(f)\ ge n+2 $,概括了$ n = 1 $ viehweg-zuo证明的情况。此外,我们证明了Popa对平滑代数纤维空间的对数Kodaira维度的超级药物的猜想在最多三个尺寸的基础上,并分析相关问题。

We prove a logarithmic base change theorem for pushforwards of pluri-canonical bundles and use it to deduce that positivity properties of log canonical divisors descend via smooth projective morphisms. As an application, for a surjective morphism $f:X\to Y$ with $κ(X)\ge 0$ and $-K_Y$ big, we prove $Y\setminus Δ(f)$ is of log general type, where $Δ(f)$ is the discriminant locus. In particular, when $Y=\mathbb{P}^n$ we have $\dim Δ(f)=n-1$ and $\mathrm{deg}\,Δ(f)\ge n+2$, generalizing the case $n=1$ proved by Viehweg-Zuo. In addition, we prove Popa's conjecture on the superadditivity of the logarithmic Kodaira dimension of smooth algebraic fiber spaces over bases of dimension at most three and analyze related problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源