论文标题

跳云;通过Supervoxels在3D不平衡环境中导航并控制Lyapunov功能

Cloud Hopping; Navigating in 3D Uneven Environments via Supervoxels and Control Lyapunov Function

论文作者

Atas, Fetullah, Cielniak, Grzegorz, Grimstad, Lars

论文摘要

本文介绍了一种新型的反馈运动计划方法,用于3D不均匀地形的移动机器人导航。我们利用点云的\ textit {supervoxel}表示,该表示可以在点云图上构成可遍布区域的紧凑连接图。鉴于此图表可穿越的区域,我们的方法将机器人带到了使用控制Lyapunov功能(CLF)和导航功能的任何可触及目标姿势。 CLF确保了生成运动计划的运动动力学可行性和目标收敛性,而导航功能则优化了结果反馈运动计划。我们在实际和模拟的3D不平衡地形中进行了导航实验。在任何情况下,实验发现都表明,我们的方法的性能优于基线,证明了该方法在挑战不均匀3D地形方面驾驶机器人的效率和适应性。所提出的方法还可以通过特定目标(例如最短距离或最少分配计划)浏览机器人。我们将我们的方法与成熟的基于采样的运动计划者进行了比较,在这些运动计划中,我们的方法在执行时间和由此产生的路径长度方面优于所有其他计划者。最后,我们提供了拟议方法的开源实施,以使机器人社区受益。

This paper presents a novel feedback motion planning method for mobile robot navigation in 3D uneven terrains. We take advantage of the \textit{supervoxel} representation of point clouds, which enables a compact connectivity graph of traversable regions on the point cloud maps. Given this graph of traversable areas, our approach navigates the robot to any reachable goal pose using a control Lyapunov function (cLf) and a navigation function. The cLf ensures the kinodynamic feasibility and target convergence of the generated motion plans, while the navigation function optimizes the resulting feedback motion plans. We carried out navigation experiments in real and simulated 3D uneven terrains. In all circumstances, the experimental findings show that our approach performs superior to the baselines, proving the approach's efficiency and adaptability to navigate a robot in challenging uneven 3D terrains. The proposed method can also navigate a robot with a particular objective, e.g., shortest-distance or least-inclined plan. We compared our approach to well-established sampling-based motion planners in which our method outperformed all other planners in terms of execution time and resulting path length. Finally, we provide an open-source implementation of the proposed method to benefit the robotics community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源