论文标题

通过有效的Dirichlet Energion优化,平滑的非刚性形状匹配

Smooth Non-Rigid Shape Matching via Effective Dirichlet Energy Optimization

论文作者

Magnet, Robin, Ren, Jing, Sorkine-Hornung, Olga, Ovsjanikov, Maks

论文摘要

我们通过Dirichlet Energy在功能地图管道中介绍了点的平滑度,并提出了一种用于有效优化IT的算法,从而导致在具有挑战性的环境中导致高质量的结果。具体而言,我们首先制定了拉回形状坐标的Dirichlet能量,以评估跨离散表面的刻度映射的平滑度。然后,我们扩展了最近提出的离散求解器,并展示了基于辅助变量重新印度的策略如何使我们能够与所需的功能映射属性(例如Bioctivity)优化点式地图平滑度。这导致了有效的地图改进策略,该策略同时改善了功能和点对点的对应关系,即使在非等法形状对上也获得了光滑的地图。此外,我们证明,可以将几种先前提出的计算平滑图的方法重新构成我们方法的变体,这使我们能够在一致的框架中比较不同的配方。最后,我们在现有基准测试和介绍的新的丰富数据集上比较了这些方法,该数据包含具有非刚性的,非等法形状对,具有类别间和跨类别对应关系。我们的工作导致了一个一般框架,用于在概念上和具有挑战性的实际环境中优化和分析地图平滑度。

We introduce pointwise map smoothness via the Dirichlet energy into the functional map pipeline, and propose an algorithm for optimizing it efficiently, which leads to high-quality results in challenging settings. Specifically, we first formulate the Dirichlet energy of the pulled-back shape coordinates, as a way to evaluate smoothness of a pointwise map across discrete surfaces. We then extend the recently proposed discrete solver and show how a strategy based on auxiliary variable reformulation allows us to optimize pointwise map smoothness alongside desirable functional map properties such as bijectivity. This leads to an efficient map refinement strategy that simultaneously improves functional and point-to-point correspondences, obtaining smooth maps even on non-isometric shape pairs. Moreover, we demonstrate that several previously proposed methods for computing smooth maps can be reformulated as variants of our approach, which allows us to compare different formulations in a consistent framework. Finally, we compare these methods both on existing benchmarks and on a new rich dataset that we introduce, which contains non-rigid, non-isometric shape pairs with inter-category and cross-category correspondences. Our work leads to a general framework for optimizing and analyzing map smoothness both conceptually and in challenging practical settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源