论文标题
柯克伍德 - 迪拉克古典纯国
Kirkwood-Dirac classical pure states
论文作者
论文摘要
Kirkwood-Dirac(KD)分布是量子状态的代表。最近,KD分布已在许多情况下使用,例如量子计量学,量子混乱和量子理论的基础。 KD分布是一种准稳定性分布,负面或非真实的元素可能表示某些任务中的量子优势。如果量子状态称为KD经典,则其KD分布是概率分布。由于大多数量子信息处理都使用纯状态作为理想资源,因此一个关键问题是确定量子纯状态是否为KD经典。在本文中,我们为KD经典纯状态的一般结构提供了一些特征。作为结果的应用,我们证明了debièvre提出的猜想[Phys。莱特牧师。 127,190404(2021)],发现所有KD经典纯状态用于离散的傅立叶变换。
Kirkwood-Dirac (KD) distribution is a representation of quantum states. Recently, KD distribution has been employed in many scenarios such as quantum metrology, quantum chaos and foundations of quantum theory. KD distribution is a quasiprobability distribution, and negative or nonreal elements may signify quantum advantages in certain tasks. A quantum state is called KD classical if its KD distribution is a probability distribution. Since most quantum information processings use pure states as ideal resources, then a key problem is to determine whether a quantum pure state is KD classical. In this paper, we provide some characterizations for the general structure of KD classical pure states. As an application of our results, we prove a conjecture raised by De Bièvre [Phys. Rev. Lett. 127, 190404 (2021)] which finds out all KD classical pure states for discrete Fourier transformation.