论文标题
$ \ Mathbb {z} _ {3} $ Fock Parafermion链中的疾病效应
Disorder effects in the $\mathbb{Z}_{3}$ Fock parafermion chain
论文作者
论文摘要
我们研究了$ \ mathbb {z} _ {3} $ fock parafermions的一维模型中疾病的影响,可以看作是原型Kitaev链的概括。使用确切的对角度来确定水平统计,参与率和域壁的动态。这使我们能够识别沿途和有限尺寸的局部阶段。为了区分安德森与多体定位,我们使用张量网络计算随机初始状态中纠缠熵的时间演变。我们证明,由于颗粒的非平凡统计,纯粹的二次派兵模型不具有安德森,而是多体定位。
We study the effects of disorder in a one-dimensional model of $\mathbb{Z}_{3}$ Fock parafermions which can be viewed as a generalization of the prototypical Kitaev chain. Exact diagonalization is employed to determine level statistics, participation ratios, and the dynamics of domain walls. This allows us to identify ergodic as well as finite-size localized phases. In order to distinguish Anderson from many-body localization, we calculate the time evolution of the entanglement entropy in random initial states using tensor networks. We demonstrate that a purely quadratic parafermion model does not feature Anderson but many-body localization due to the nontrivial statistics of the particles.